(qwen_vl) Ubuntu@0017-dsm-prxmx30138:~$ history 20
8 conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
9 pip install git+https://github.com/huggingface/transformers accelerate
10 pip install beautifulsoup4 tinycss2
11 pip install six
12 pip install "qwen-vl-utils[decord]==0.0.8"
13 pip install git+https://github.com/huggingface/transformers accelerate
14 clear
15 pip install "qwen-vl-utils[decord]==0.0.8"
16 clear
17 nano app.py
18 python app.py
19 clear
20 python app.py
21 pip install gradio
22 clear
23 python app.py
24 clear
25 history 20 # 顯示最近20條命令
import gradio as gr
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
# 加載模型和處理器
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-VL-7B-Instruct",
torch_dtype="auto",
device_map="auto"
)
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
def process_image_and_text(image, text_prompt):
if image is None:
return "請上傳一張圖片。"
# 構(gòu)建消息格式
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": image, # Gradio將自動處理圖片路徑
},
{"type": "text", "text": text_prompt if text_prompt else "Describe this image."},
],
}
]
try:
# 準備推理輸入
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to(model.device)
# 生成輸出
with torch.no_grad():
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)
return output_text[0]
except Exception as e:
return f"處理過程中出現(xiàn)錯誤: {str(e)}"
# 創(chuàng)建Gradio界面
with gr.Blocks() as demo:
gr.Markdown("# Qwen2.5-VL 圖像理解演示")
with gr.Row():
with gr.Column():
image_input = gr.Image(type="filepath", label="上傳圖片")
text_input = gr.Textbox(
placeholder="請輸入提示語(如不輸入,默認描述圖片)",
label="提示語"
)
submit_btn = gr.Button("提交")
with gr.Column():
output = gr.Textbox(label="輸出結(jié)果")
submit_btn.click(
fn=process_image_and_text,
inputs=[image_input, text_input],
outputs=output
)
gr.Examples(
examples=[
["path/to/example1.jpg", "這張圖片里有什么?"],
["path/to/example2.jpg", "描述圖中的場景"],
],
inputs=[image_input, text_input],
)
# 啟動應(yīng)用
if __name__ == "__main__":
demo.launch(share=True)